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Wigner crystal versus Friedel oscillations in the one-dimensional Hubbard model
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We analyze the fermion density of the one-dimensional Hubbard model using bosonization and numerical
density matrix renormalization group calculations. For finite systems we find a relatively sharp crossover even
for moderate short-range interactions into a region with 4k density waves as a function of density. The results
show that the unstable fixed point of a spin-incoherent state can dominate the physical behavior in a large
region of parameter space in finite systems. The crossover may be observable in ultracold fermionic gases in

optical lattices and in finite quantum wires.
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I. INTRODUCTION

Having been predicted in the early days of quantum me-
chanics, the Wigner crystal! is one of the simplest but most
dramatic many-body effects: due to the long-range repulsive
forces, electrons spontaneously form a self-organized lattice
at low enough densities and temperatures much different
from a free electron gas. Experimental verification has been
difficult but very recently signatures of a Wigner crystal were
reported in carbon nanotubes.?> Using ultracold gases in op-
tical lattices, it is now also possible to produce well-
controlled correlated fermion systems in restricted dimen-
sions, albeit with short-range interactions.>*

The Wigner crystal in one dimension (1D) has been dis-
cussed so far mostly in the context of long-range interac-
tions. In that case, it has been predicted by Schulz’ that the
density-density correlations corresponding to an equally
spaced interparticle distance become dominant. A crossover
to Wigner density waves has been observed numerically at
strong long-range interactions with very few particles.® How-
ever, for short-range interacting fermion systems in 1D pos-
sible Wigner crystal signatures have not been addressed theo-
retically so far.

The prototypical model for short-range interacting fermi-
ons is the repulsive (U>0) 1D Hubbard model

L-1 L
H=- tz (l//;x‘;ba,x+l + HC) + UE Ny I - (1)
x=1 x=1

Even though many exact results have been derived for this
model using the Bethe ansatz,’ the local densities in finite
chains with open boundaries cannot yet be calculated by ex-
act methods.

It is known that at low energies the short-range interacting
system in Eq. (1) becomes effectively scale invariant up to
well-understood logarithmic corrections in the spin channel.
Therefore, any crossover toward a different physical region
would be unexpected. Moreover, a Wigner crystal region
should be unstable since the 2k -density Friedel oscillations®
are always the slowest decaying correlations due to a
bounded Luttinger parameter’ 0.5<K_.=1. Nonetheless,
subdominant oscillations at other wave numbers also exist as
has been explicitly shown, e.g., for the Hubbard model in a
finite magnetic field.>!°
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We now study the density distribution in finite Hubbard
chains with hard-wall boundaries by a combination of
bosonization and numerical density matrix renormalization
group (DMRG) calculations. In Sec. II we describe how 2k-
and 4kg-density oscillations typically arise in 1D systems.
The corresponding analytical expressions for the model (1)
are derived using bosonization in Sec. III. Using the
bosonization results, it is then possible to accurately analyze
the numerical results in Sec. IV. The physical interpretations
and conclusions are presented in Sec. V. Despite the fact that
the interactions are short ranged and of moderate strength,
we find that a region with dominant 4k, oscillations is al-
ways stable at low filling. The results show that the scale
invariance is explicitly broken. The observed Wigner crystal
region illustrates that in 1D even short-range interactions
have an increasing effect with growing interparticle spacing.
The observed crossover is related to the so-called spin-
incoherent Luttinger liquid."!

II. DENSITY OSCILLATIONS

The density profile in a system of interacting particles can
be taken as a good indication of the nature of the ground
state. For example, let us consider a true Wigner crystal in
1D with broken translational symmetry, where the particles
are localized at regular distances. If the average filling is
given by ny, the corresponding density n(x) would then be
well described by a sum of Gaussian wave functions local-
ized at positions x=j/ny with some localization length &

o1 (x—j/no)z) 22 2
nx)= 2, ——ex (— = | = nyb;(mngx,e 2™ M),
= \ame p 28 03\ X

2)
where we have used an exact identity for the elliptic Jacobi
. 2 A
theta function 65(x,q) == ,¢’ %™
Interestingly, for a moderate particle distance in relation

to the localization length 1/ny=<3¢, we have 2 Em <
and the expression (2) is well approximated by a simple os-
cillation of the form

() = ng(1 +2627E% cos(2mmgy)). 3)

Since the Fermi point of a filled Fermi sea with density n is
given by kr=ny7 in the thermodynamic limit, it is clear that
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FIG. 1. (Color online) Schematic occupied states for (a) the

nearly free case and (b) for strong interactions (“large Fermi sea”).

the oscillations in Eq. (3) correspond to a 4k density wave.
In this sense, 4k, density oscillations and the Wigner crystal
state can be taken to be equivalent phenomena. The ampli-
tude of the oscillations in Eq. (3) can even be used to extract
the effective localization length &.

There is, however, another possible reason for 4k oscil-
lations in a finite system, which is linked to open boundary
conditions and the arrangement of standing waves in mo-
mentum space. Due to interactions, fermions of opposite spin
may no longer be allowed to occupy the same single-particle
states and the Fermi sea is filled to effectively twice the
original Fermi point relative to the noninteracting case as
shown in Fig. 1. The summation over standing waves
sin(nzjx) results in a density of the form

n(x) = ESIH( npaXx ) o~ 2(L+1)51n(L+1 )’

(4)

where we have used “open” boundary conditions i, g
=,;+1=0 on a finite lattice W1th a lattice constant of unit
length. The Fermi point kF:Tm is centered between the
highest occupied and lowest unoccupied level in a system
with N noninteracting fermions with spin as indicated in Fig.
1.

The density of the large Fermi sea in Eq. (4) again shows
4ky density oscillations but in contrast to the true Wigner
crystal in Eq. (3) the translational invariance is broken only
by the open boundary conditions. There is no spontaneous
symmetry breaking in the large Fermi sea since the ampli-
tude in Eq. (4) vanishes in the thermodynamic limit. None-
theless, the 4k oscillations indicate a localization of par-
ticles near the boundary with a localization length that can be

estimated by comparing the amplitude with 2n0e‘2”2§2”5 from
Eq. (3). Indeed, the Wigner crystal state and the large Fermi
sea are strongly related in 1D. Both can only arise due to
strong repulsive interactions and both are spin-incoherent
states, which are characterized by a (nearly) degenerate spin
sector. The Wigner crystal state has been used as a starting
point to derive the concept of a spin-incoherent Luttinger
liquid in the limit of very strong long-range interactions by
allowing additional fluctuations.!" On the other hand the
large Fermi sea is in fact the exact spin-degenerate ground
state of the Hubbard model in Eq. (1) in the limit of U— o0
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as can be shown by the Bethe ansatz. Therefore, both states
represent fixed points of infinitely strong interactions, which
are unstable for any finite interaction strength. In this sense
the amplitude of the 4k oscillations plays the role of an
order parameter which should be vanishing in the thermody-
namic limit in either case. However, in finite systems or at
finite energy scales it is in principle possible to observe re-
gions that are dominated by unstable fixed points. In fact, as
we will see from the numerical simulations, the order param-
eter remains finite in systems with open boundary conditions
defining a region with dominant spin-incoherent behavior,
which is separated by a well-defined crossover.

In the noninteracting limit it is well-known that a finite
system exhibits 2k Friedel oscillations,® which are calcu-
lated by summing over double occupied standing waves as
shown in Fig. 1(a),

NI2

n(x) _ iz sin ( i ) 1o - Sin(zkpx)

(L+ 1)sm(L+l )

It has been predicted that the Friedel oscillations decay
slower due to interactions,'? but as our numerical results
show the amplitude is in fact strongly suppressed with in-
creasing U. It must be emphasized here that the 4k oscilla-
tions discussed above are not simply a higher harmonic of
the Friedel oscillations, but are an independent interaction
effect which in fact competes with the Friedel oscillations as
we will see later.

5)

III. BOSONIZATION RESULTS

Using standard bosonization'? it is possible to predict how
finite interactions modify the analytic form of the 2k and
4kr oscillations. In particular, in the low-energy effective
theory after linearization around kp of the fermion fields
Y= €*F Y o+ e Py one can identify the Friedel oscil-

lations as an expectation value of the bosonic operator!?!413
Org = (€Y () o) + Hoc)
o sin(2kpx + \rZWKCgoC)cos(\e"ans). (6)

Here the spin and charge fields represent the mode expan-
sions v=s,c

L
X 1 m™m
. T
+ —=sin + 7
o=t 2 T (Lﬂx)(an,y a,.) ()

according to open boundary conditions ; (x)=—tp(-x).1*
The number counting operator Q does not contribute in
ground-state expectation values (Q)=0. Using the standard
calculations of correlation functions in finite systems'® the
expectation value is determined to be

sin(2kgx)
[(L + 1)Sin(L—:Tlx)](Kc+1)/2

up to logarithmic corrections.!” The interactions change the
decay rate of the Friedel oscillations compared to Eq. (5),
which appear to be enhanced for repulsive interactions
K.<1. However, as we will see, the yet undetermined am-

(O (8)
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plitude is strongly suppressed with interactions and at low
fillings.

The derivation of the Wigner oscillations from bosoniza-
tion is more subtle. They arise from interactions because of
the Umklapp term in the Hamiltonian density

Ou=g3(e™ P Yy iy 1k ., + Hee.)
od g3COS(4kFx + v SWKC(PC) 5 (9)

where gz U. In first order perturbation theory this operator
induces a density expectation value (n);=(n)—(n), relative
to the unperturbed case

L
(n(x))y = j dyE

0 a

0[O y(y)|a)ald e (x)[0)
E,-E,

. (10)

where |a) are all excited states. By using the mode expansion
in Eq. (7) it is possible to calculate the expectation values for
all bosonic excitations'® |@) with the result

8K t
(n(x)y = = cf - x dy,
ve Jo [(L+ l)sm(my)]z’(f
where g(x,y)=2§1=,#sin(%’iy)cos(ﬁx)z F6(y—x). Using
[7sin(4kpy)y=>Kedy =~ cos 4kpx/4kpxKe+ O(xK71) the inte-
gral can be approximated as'8

sin(4kgy)g(x,y)

(11)

oK, sin(4kp— 75)x
vkg [(L + 1)sin(L—flx)]2KC'

(n(x))y (12)

The decay rate for the 4k oscillations is faster than for the
Friedel oscillations in Eq. (8) since K.=0.5 for the Hubbard
model. The linear dependence on g3/kz*<UL/N is only ac-
curate to lowest order in perturbation theory but the typical
oscillatory behavior and power law will describe the behav-
ior for any U and filling N/L. Alternatively, the ad hoc in-
clusion of Oy directly in the operator expression for the
density is also a valid approach.” The explicit derivation
from perturbation theory above now provides additional in-
formation by indicating an increase in the amplitude with
g3/kp, i.e., with larger interactions and smaller filling. Note,
that both the Friedel oscillations in Eq. (8) and the 4k os-
cillations in Eq. (12) have a nonzero expectation value only
in systems with open boundary conditions. However, the ex-
act amplitude cannot be derived from bosonization so that
numerical calculations have to be used.

IV. NUMERICAL RESULTS

We have implemented a DMRG algorithm'® for the model
in Eq. (1) in order to calculate the local density in finite
systems with a given fermion number N. Typical densities at
various fillings are shown in Fig. 2 for U=4¢ and L=200,
which clearly exhibit the predicted oscillations. Figure 3
shows how the local density at a given filling of N/L=0.1
emerges from the slower Friedel oscillations to a Wigner
crystal pattern as U increases.

An accurate data analysis is now possible in terms of our
analytic predictions from Egs. (8) and (12),
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FIG. 2. (Color online) Local density for U=4¢ and L=200 for

different fillings showing the Friedel and Wigner crystal oscilla-
tions. The solid lines correspond to the theoretical prediction in Eq.

(13).

() =g - A sin(2kx) i Sin(4kp— L—f])x
) =0 A TR A ) P

L+1 L+1
(13)

where the Friedel amplitude A; and the Wigner amplitude A,
can be determined from fits to the numerical data. For arbi-
trary interactions U >0 and filling N/L the Luttinger param-
eter 0.5=K_.=1 can be calculated exactly>”!? as shown in
Fig. 5 so that the amplitudes in the middle of the chain A,
and A, are in fact the only two adjustable fitting parameters.
For the noninteracting case in Eq. (5) we have A1=$ and
A,=0, which we can use as a test of the numerical accuracy.
The uniform density n, is fixed by the requirement that
Jn(x)dx=N so that it is not an independent fitting parameter
(e.g., ”0=L_}J\r]1 for U=0).

Figure 2 shows the quality of typical fits to the DMRG
data. The oscillations in the middle of the chain are very well
represented by the analytical expression (13) while there are

v 4.
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FIG. 3. (Color online) Local density for N=20 and L=200
showing the crossover from 2kr to 4k oscillations with increasing
interaction strength U.
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FIG. 4. (Color online) (a)-(c) Crossover of the amplitudes in Eq.
(13) (error =10%) for L=200 from the DMRG data as a function of
filling and interaction. (d) Crossover points (A;=A,) in the
U—-N/L-plane showing the scaling with N/LU=0.034 for L=200.
The solid line separates the Wigner and Friedel regions.

small deviations near the edges. Deviations from Luttinger
liquid theory near boundaries have also been observed before
in the context of the local density of states.’’ In order to
determine the asymptotic amplitudes A, and A, in the middle
of the chain as accurately as possible we have therefore ex-
cluded the first few sites near the ends in the fits. The fits are
sensitive enough to even confirm the exact values of the
wave vectors 2kg and 4kp— 47 since small deviations of or-
der L% already would make the quality of the fits consider-
ably worse.

The results for the Friedel amplitude A; and the Wigner
amplitude A, are shown in Fig. 4 for L=200. The amplitudes
show a clear crossover from Friedel oscillations to Wigner
crystal waves at low filling. Interestingly, the Friedel oscilla-
tions are suppressed exactly when the Wigner crystal waves
are strong and vice versa. Therefore, it is possible to identify
two distinct “regions” of Wigner and Friedel behavior.

From the Luttinger liquid theory it is not a priori obvious
why Friedel and Wigner oscillations cannot be strong simul-
taneously but from the discussion in Sec. II it is clear that the
Friedel oscillations must compete with the large Fermi sea in
Fig. 1 since both states cannot be realized at the same time.

In Fig. 4(d) we have plotted the parameters for which the
two amplitudes are equal A;=A, for a given length of
L=200, which we define as the line at which the crossover
between the two regions occurs. Interestingly, the crossover
occurs along a line of constant N/ UL for small fillings (e.g.,
N/UL=0.034 for L=200).

The Wigner-type behavior always occurs at low filling or
equivalently at large U. At first sight it appears rather coun-
terintuitive that the on-site interaction U should show a
stronger effect as the average interparticle distance L/N 1is
increased. This behavior is special to one dimension since

the total kinetic energy scales with (N/L)* at low filling,
which becomes always smaller than the total interaction en-
ergy, which scales with (N/L)* as N/L—0.

The Bethe ansatz equations for the Hubbard model also
show scaling behavior in that limit. In particular, we find that
the Luttinger parameter is given by the simple expression,

Nt N? £
K.=05+ a 4mn2+0 F,ﬁ (14)

in the limit of low filling and large U. This is shown in
Fig. 5.

Numerically the scaling behavior for the crossover points
in Fig. 4(d) is observed for each length L, separately. How-
ever, if the slope of the crossover line N/UL is plotted as a
function of length L we observe a clear downturn in the limit
of large L as shown in Fig. 6.

‘ ‘ ‘ ‘ ‘
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FIG. 6. (Color online) Crossover points N/LU as a function of
inverse length 1/L.
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V. CONCLUSIONS

The observed crossover from Friedel to Wigner oscilla-
tions is not a true phase transition, which cannot occur in the
ID Hubbard model. Nonetheless, the two regions show
clearly different physical behavior. In particular, in the region
of 4ky oscillations, the system is characterized by spin-
incoherent behavior with rather small or vanishing spin cor-
relations according to the arrangement in Fig. 1(b). As out-
lined in recent works, the spin-incoherent Luttinger liquid
shows significantly different physical behavior, especially in
regards to transport and tunneling characteristics.!! The
dominance of 4k oscillations in finite systems appears to be
an additional indicator for the onset of spin-incoherent be-
havior. The particular correlation functions for the local den-
sity in finite systems are in fact well suited to study this
crossover since the 4k term in Eq. (12) contains only charge
degrees of freedom while the Friedel term in Eq. (8) also
contains the spin boson ¢,, the amplitude of which is accord-
ingly suppressed in the spin-incoherent regime.

The length dependence of the crossover points N/LU in
Fig. 6 violates scaling behavior: For a given density N/L and
interaction strength U all parameters in the Luttinger liquid
theory (v.,v,,K,) are fixed. Nonetheless, it is still possible to
observe a crossover from Wigner to Friedel oscillations as a
function of length (moving horizontally in Fig. 6). It is quite
surprising that a critical model can cross over to different
physical behavior as a function of length only when all rel-
evant parameters are fixed. This remarkable violation of
scale invariance is not due to higher order operators such as
the well-known logarithmic terms which also give strong
corrections to the scaling behavior.!” Instead, the crossover
can be explained by the competition between vastly different
velocities in the spin and the charge sectors. Naively, the
onset of spin incoherent Luttinger liquid would be expected
when the ultraviolet spin cutoff v,/a becomes comparable to
the infrared charge cutoff v./L giving a length-dependent
crossover. While this may explain the broken scale invari-
ance, this argument does not explain the crossover line in
Fig. 6 quantitatively. From the diagram alone it is also not
clear that the Friedel region is always stable in the thermo-
dynamic limit L—cc but a downturn as indicated by the red
dotted line would be expected for larger lengths L.

The arguments presented here are also valid for other Lut-
tinger liquid systems since the competition of spin and
charge energy scales is generically always possible as a func-
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tion of interaction and filling. Therefore, the crossover be-
tween the different density oscillations discussed above is a
common signature of spin-charge separation in one dimen-
sion.

From the experimental side, Luttinger liquid behavior has
so far only been seen in very special cases such as carbon
nanotubes?'-?? or cleaved edge overgrowth wires.”> There is
some hope now that Luttinger liquid physics can also be
realized with ultracold fermionic atoms in nearly ideal geom-
etries formed by optical traps,>* which would have the ad-
vantage that the density distribution discussed here could in
principle be detected directly using high-resolution cameras,
electron beams,” or noise interference.’® Fermionic gases
can already be cooled down to less than 1L0 of the Fermi
energy. The finite temperature will lead to a faster decay of
the oscillations from the edges that can be accounted for in
the theory.'® In fact, it would be interesting to perform ex-
periments in a regime where all spin excitations are smaller
than the temperature. This would be a perfect realization of
the spin-incoherent Luttinger liquid leading to a complete
vanishing of the Friedel oscillations while the Wigner oscil-
lations remain. Hard edges can be implemented by focused
laser beams or trapped impurity atoms.

In summary, we have systematically analyzed the local
density distribution in finite Hubbard chains as a function of
filling, interaction strength U, and system size. A combina-
tion of bosonization and DMRG calculations allowed a de-
tailed description of the density oscillations in terms of the
quantitative formula (13). For small interactions and large
fillings 2ky Friedel oscillations A; dominate while the
Wigner crystal amplitude A, remains small. However, for
smaller filling or increasing interactions the overall ampli-
tude A; of the Friedel oscillations is strongly reduced while
A, grows. This signals the crossover to a different physical
region, which is described by a spin-incoherent large Fermi
sea with no double occupancy of spin-up and spin-down fer-
mions. The density oscillations we have described here are
an accessible feature to study the crossover toward the spin-
incoherent Luttinger liquid in detail, e.g., using ultracold fer-
mionic gases in 1D optical traps.
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